

THE CONSERVICTION FUND

Interior's Pariner in Conservation

The Garcia River Forest Forest Carbon Project: a CCAR case study

Louis Blumberg September 6th 2007

Presentation objectives

- California Climate Action Registry Forest Protocols
- Registering a Forest Carbon Project in California

HICONSHRUMHON HUNG Arabas Arabas Arabas a

CCAR development

- Rigorous 4-year stakeholder process
- Scientific peer review
- · Public meetings
- Extensive history of government support

HE CONSERVATION IN NO Company of Deathing

Highlights

- October 13, 2001 SB 527 establishes California Climate Action Registry (CCAR)
- <u>September 7, 2002</u> SB 812 directs CCAR to forest carbon project protocols built on four key principles – additionality, permanence, native species, and natural forest management
- <u>August 4, 2004</u>, Board of Forestry and Fire Protection passes resolution supporting Forest Protocols
- October, 2004 California Climate Action Registry board unanimously adopts the Forest Protocols.
- September, 2006 AB 32 enacted. CARB to adopt CCAR protocols to maximum extent feasible and re-establishes key climate project principles in law.

ir Conservation (CN) and the server desired to seName Consequency

CCAR basics

- CCAR established a standardized, transparent, voluntary accounting system for GHG emissions and emission reductions
- Three tiered protocol structure
 - General reporting multi-sector
 - Project forests (SB 812) and methane digesters
 - 3rd party certification approved for forests in June 07
- See www.climateregistry.org

THE CONSERVATION FO

CCAR Forestry Protocols

- Quantify changes in forest carbon over time based on three project types
 - Conservation-based forest management
 - Forest conservation avoided deforestation
 - Reforestation tree planting
- Establish essential accounting platform
- 4-year stakeholder process

Key climate principles

- Permanence easement secures land base
- Baseline CA Forest Practice Rules
- Additionality exceeds business as usual
- Leakage entity wide avoid / minimize
- Ecologically beneficial native forests
- Verification 3rd party certification

Consistent principles

- · Kyoto protocol
- Regional Greenhouse Gas Initiative
- AB 32 Sec. 38562(d)(1)
- AB 32 Market Advisory Committee report pp 62-65

The principles apply to projects in all sectors We will need emission reductions from all sectors

HILL CONSERVATION CONT

Inventory methods

- What is the forest like today?
- 2004 color aerial photos
- 17 stand types, most are 40-50 years old dominated by tanoak in-growth
- Stratified sampling 844 monumented inventory plots

Modeling methods

- Expand data to cover full forest based on stand stratification and site index
- 2. Define project & baseline management regimes:
 - Project: Conservation Based Forest Management
 - Baseline: Maximum Allowable Harvest under FPR
- Grow forest into the future (using models). The difference between these two regimes is the carbon sequestered as a result of the project.

Modeling methods: define management regimes

Conservation Based Forest Management

- $\begin{tabular}{ll} \bullet & Treatment to reduce hardwood competition for tanoaks $4-20$ inches DBH \\ \end{tabular}$
- Light touch, single tree selection logging. Start in 2010, thin higher volume stands to increase growth and stocking over time retaining 120 ft² BA
- Continue to thin once every 15 years gradually increasing the residual BA to 180 ft²
- Only applied to non-reserve areas (15537 acres)

Maximum Allowable Harvest

• No harvest on extended WLPZ buffer, owl site, TMDL

•Starting in 2006, clearcut the oldest 1/6 with CA FPR-C

- Continue every 5 years until all age classes have been cut.
- · Re-enter stands after 60 years
- Cut on all unrestricted forested acres not just non– reserve area

Modeling results To get graph of total carbon, convert model output to metric tons of Carbon with CCAR equations. Optional pools of below-ground and wood products pools will be added Validation of FPS model with CRYPTOS (second model) showed agreement in

estimates

Results

- Storing appx. 42,000 mtCO₂e per year
- Equivalent of 7,600 passenger cars
- Important source of revenue for restoration and road rehabilitation
- At best, supplemental revenue stream that does not equal timber value

Lessons learned

- CCAR forest protocols are a workable method to reliably measure changes in forest carbon
- They produce high-value, credible emissions reductions that are in demand on the voluntary market
- Adding CCAR requirements to standard inventory not significant increase in cost

Lessons learned

- Initial results indicate hypothesis is true
- Consistent with TNC forest carbon projects in other parts of the world
- Our experience is favorable and we hope serves as a model for other forest landowners to address climate change.

Conclusion

By adopting the protocols now, CARB will:

- 1. address global climate change
- 2. Provide certainty and encourage other landowners to undertake projects
- 3. enable the state to report real, early progress towards meeting the AB 32-mandated emission levels

CARB 2-phase process is reasonable & prudent

